
BRITISH MATHEMATICAL OLYMPIAD

Round 2 : Thursday, 27 February 1997

Time allowed Three and a half hours.

Each question is worth 10 marks.

Instructions • Full written solutions - not just answers - are
required, with complete proofs of any assertions
you may make. Marks awarded will depend on the
clarity of your mathematical presentation. Work
in rough first, and then draft your final version
carefully before writing up your best attempt.

Rough work should be handed in, but should be
clearly marked.

• One or two complete solutions will gain far more
credit than partial attempts at all four problems.

• The use of rulers and compasses is allowed, but
calculators and protractors are forbidden.

• Staple all the pages neatly together in the top left
hand corner, with questions 1,2,3,4 in order, and
the cover sheet at the front.

In early March, twenty students will be invited
to attend the training session to be held at
Trinity College, Cambridge (10-13 April). On
the final morning of the training session, students
sit a paper with just 3 Olympiad-style problems.
The UK Team - six members plus one reserve
- for this summer’s International Mathematical
Olympiad (to be held in Mar del Plata, Argentina,
21-31 July) will be chosen immediately thereafter.
Those selected will be expected to participate
in further correspondence work between April
and July, and to attend a short residential
session in late June or early July before leaving
for Argentina.

Do not turn over until told to do so.

BRITISH MATHEMATICAL OLYMPIAD

1. Let M and N be two 9-digit positive integers with the
property that if any one digit of M is replaced by the digit
of N in the corresponding place (e.g., the ‘tens’ digit of M
replaced by the ‘tens’ digit of N) then the resulting integer is
a multiple of 7.

Prove that any number obtained by replacing a digit of N by
the corresponding digit of M is also a multiple of 7.

Find an integer d > 9 such that the above result concerning
divisibility by 7 remains true when M and N are two d-digit
positive integers.

2. In the acute-angled triangle ABC, CF is an altitude, with F
on AB, and BM is a median, with M on CA. Given that
BM = CF and 6 MBC = 6 FCA, prove that the triangle
ABC is equilateral.

3. Find the number of polynomials of degree 5 with distinct

coefficients from the set {1, 2, 3, 4, 5, 6, 7, 8} that are divisible
by x2 − x + 1.

4. The set S = {1/r : r = 1, 2, 3, . . .} of reciprocals of the
positive integers contains arithmetic progressions of various
lengths. For instance, 1/20, 1/8, 1/5 is such a progression,
of length 3 (and common difference 3/40). Moreover, this
is a maximal progression in S of length 3 since it cannot be
extended to the left or right within S (−1/40 and 11/40 not
being members of S).

(i) Find a maximal progression in S of length 1996.

(ii) Is there a maximal progression in S of length 1997?


